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a b s t r a c t

Bottom-up self-assembly methods in which individual molecular components self-organize to form
functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-
assembly processes are the hallmark of biology where complex macromolecules with defined functions
assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs)
have drawn considerable attention for their unique self-assembly architectures and functionalities that
can be harnessed to produce new materials for industrial and biomedical applications. In particular,
PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that
can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring
the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and
environmentally sustainable means for the production of nano-materials. This review outlines the
fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and
threat detection.

& 2015 Elsevier Inc. All rights reserved.
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Introduction

Advances in nanotechnology offer significant improvements in
a wide range of applications that include light weight materials
with greater strength, increased energy efficiency from electronic
devices, and better sensors for a range of environmental, pharma-
ceutical and manufacturing uses. A key challenge to achieving
these improvements is the ability to assemble and pattern diverse
components into functioning nanoscale devices. Current “top-
down” semiconductor processing techniques such as lithography
have limitations with respect to the scale of assembly, complexity
of the desired nanofeatures and cost of synthesis (Fan et al., 2013).
In comparison, biological systems function almost exclusively
through the molecular assembly of diverse components to pro-
duce molecular machines of incredible complexity. Microtubule
kinesin and bacterial flagella motors are two examples of the types
of “bottom up” self-assembly systems that are sought by engineers
yet routinely produced at the nanoscale within biological systems
(Browne and Feringa, 2006; Korten et al., 2010; Stock et al., 2012).
However, the development of such sophisticated assembly sys-
tems requires new engineering advances that integrate or mimic
these “bottom-up” self-assembly methods.

To achieve these advances scientists from biological and engineer-
ing disciplines have investigated the nanoscale structures of viruses
as simple systems from which to develop design, synthesis and
application strategies for the production and functionalization of self-
assembling materials. Viruses have evolved exquisite macromolecu-
lar particles in which to store and protect their genomes. These
particles also play critical roles in cell entry, virus movement and in
many instances virus replication. The functional demands placed
upon these particles has resulted in the development of extremely
uniform and complex molecular structures that are derived from the
self-assembly of a limited number of molecular building blocks. In
fact, virus particles represent ideal nanomachines that not only self-
assemble into macromolecules of defined shape and size but also
function as environmental sensors for the controlled release of their
genomes upon cell entry. The same virus particles also operate as
information storage devices that carry genetic instructions to pro-
duce the next generation of components required for self-assembly.
These combined features have led to the incorporation of virus
structures into an array of devices and applications that have broken
new ground in the development of biomaterials (Douglas and Young,
1998; Shenton et al., 1999; Whaley et al., 2000). In particular, plant
viruses have received significant interest as both models and
materials for the establishment of strategies that combine biological
processes with traditional top-down manufacturing systems. Char-
acteristics that make many plant viruses attractive for these studies
are their relative simplicity, including the lack of membranes, ease of
purification and simple one or two protein capsid assemblies that are
structurally well defined. In addition, genetic programmability and
in vitro assembly systems permit the uniform production of particles

with designer functionalities such as antigen display and analyte
recognition. In this review we primarily focus on the application of
plant virus-derived nanoparticles (PVN) as nanoscale scaffolds and
containers for the development of materials and devices with unique
functionalities. However, space constraints limit our ability to fully
cover the diverse array of PVN applications currently being investi-
gated. In addition, we have not attempted to fully address the
considerable work being done in the application of PVN in vaccine
development, bio-imaging and drug delivery. To address these
deficiencies we recommend several additional reviews that cover
the application of viruses and protein structures in nanotechnology
and biomedicine applications (Alonso et al., 2013a; Fan et al., 2013;
Franzen and Lommel, 2009; Li and Wang, 2014; Lomonossoff and
Evans, 2014; Rong et al., 2011; Young et al., 2008).

PVN characteristics for biomaterial fabrication

Several features make plant viruses useful as scaffolds for the
synthesis of nano-materials. First, their simple virions derived
from the self-assembly of defined protein subunits are remarkably
stable and are of uniform size and shape. The repeating patterns of
amino acid side chains displayed by each protein subunit can
function to direct the ordered nucleation of inorganics or chemical
cross-linkers for the display of novel molecules on either the inner
or outer virion surfaces. Second, the ability of these particles to
self-assemble and remain monodispersed in solution permits their
functionalization and analysis in bulk suspensions. In fact, studies
have determined that virion particles such as Paramecium bursaria
chlorella virus (PBCV-1) behave similar to nanosphere polymer
colloids in suspension, allowing standard materials science appro-
aches to be used for their analysis (Sirotkin et al., 2014). Third, the
three-dimensional (3-D) structures for many of these viruses are
known, permitting the design and targeting of specific moieties on
or within the PVN as a means to add functionality. Fourth, genetic
programming for the development of virions with directed struc-
tural and functional properties is possible, including the addition
of unique amino acids, peptides and assembly profiles. Fifth,
as biomaterials plant viruses can be produced at scale and in a
renewable fashion. We are dependent upon biomaterials for many
of the necessities and conveniences of everyday life. Most of these
biomaterials including ethanol fuels, cotton and wood fibers are
produced through modern agricultural practices and at a scale that
makes these products extremely cost efficient. The ability to apply
such large-scale cost effective practices to produce nanoscale
materials represents an attractive method for industrial applica-
tions. Combined these traits have attracted a range of researchers
with expertise ranging from agronomic production, virology,
structural biology, colloid chemistry and microdevice fabrication
to explore the potential application of these particles in materials
and therapeutic applications.

J.N. Culver et al. / Virology 479-480 (2015) 200–212 201



Plant viruses commonly investigated for nano-materials
applications

Several plant viruses have been extensively investigated as
scaffolds for materials applications. These viruses share several
common traits that include the lack of an envelope, established
structural information, stability under a range of conditions and
simple methods for virion/PVNs production and purification. In
addition, infectious cDNA clones for these viruses allow for the use
of genetic engineering approaches for the modification of PVN
structure (Chapman et al., 1992; Dawson et al., 1986; Eggen et al.,
1989; Liu and Lomonossoff, 2002; Xiong and Lommel, 1991).
Characteristics of several highly studied plant viruses used in
nanofabrication studies are outlined below.

Icosahedral scaffolds

One of the structurally simplest plant viruses currently being
investigated for its application as a nanoparticle is Red clover necrotic
mosaic virus (RCNMV). The RCNMV virion is assembled from 180
copies of an identical coat protein (CP) subunit to form an icosahedral
particle with an outer diameter of 36 nm and an inner diameter of
17 nm. Crystallographic and cryoelectron microscopy studies indicate
RCNMV shares significant structural similarities with a related
member of the Tombusviridae, Tomato bushy stunt virus (Martin
et al., 2010; Sherman et al., 2006). One RCNMV feature that has
made it a particularly attractive nanoparticle carrier is the ability to
modulate pore openings and closings within the particle via divalent
metal cations (Sherman et al., 2006). Similar to RCNMV, Cowpea
chlorotic mottle virus (CCMV), a member of the Bromoviridae, pro-
duces a 26 nm diameter icosahedral virion composed of a 180
identical CP subunits and also undergoes reversible pore conversions
in response to pH changes, providing a strategy for the loading and
unloading of target molecules (Klem et al., 2005; Speir et al., 1995b;
Tama and Brooks, 2002).

Another icosahedral virus that has been developed as a
nanoparticle scaffold is Cowpea mosaic virus (CPMV) (Sainsbury
et al., 2010). The CPMV virion is 30 nm in diameter and composed
of 60 copies each of two different CP subunits. The small subunit is
a 23 kDa peptide and folds into a jellyroll β-sandwich while the
large subunit is a 41 kDa peptide composed of two domains each
folded into a jellyroll β-sandwich (Lin et al., 1999). Additionally,
CPMV can be purified in large quantities from infected leaves, is
stable at temperatures up to 60 1C and canwithstand some organic
solvents (Montague et al., 2011; Steinmetz et al., 2009; Wang et al.,
2002).

Filamentous scaffolds

The rigid rod (18�300 nm) virion of Tobacco mosaic virus
(TMV) is the most widely investigated rod-shaped plant virus
nanoparticle. The TMV virion consists of about 2130 identical
17.5 kDa CP subunits stacked in a helix around a single strand of
plus sense RNA, leaving a 4 nm diameter channel through the
300 nm long virion axis (Namba et al., 1989). TMV and related
members of the Virgaviridae have been propagated and purified in
kilogram quantities using large scale industrial bioprocessing
systems, demonstrating the potential to manufacture these scaf-
folds at a commercial level (Turpen, 1999).

Another filamentous plant virus that has received attention for
its application to nanotechnology is Potato virus X (PVX). The PVX
virion is a flexuous rod 13�515 nm in size and assembled from
multiple copies of a single 25 kDa capsid protein. A low-resolution
structure for the PVX virion has been reported (Kendall et al.,
2013). In addition, extensive surface modifications have been

investigated for the display of peptides and ligands by genetic
and conjugation systems (Lee et al., 2014).

Functionalizing PVN scaffolds

A key use of PVNs in nanotechnology is the scaffolding of
materials into novel physical configurations on the inner and outer
virion surfaces. Simple plant-derived PVN scaffolds confer a
number of advantages in this process including nanoscale control
over position and spacing of the scaffolded materials, increased
material concentration and activity through encapsulation within
a defined space and high aspect ratio features for enhanced
surface area. Seminal studies by Douglas and Young and Shenton
et al. were among the first to utilize these advantages for the
deposition of inorganics including paratungstate and decavana-
date as well as cadmium and lead sulfides within the icosahedral
cage of CCMV or along the outer surface of TMV, respectively
(Douglas and Young, 1998, 1999; Shenton et al., 1999). These initial
studies laid the groundwork for the development of protein
structural modifications and novel chemistries that now permit
the integration of mineralized PVNs into a range of applications.
Outlined below are several examples of the strategies for the
attachment and deposition of PVN templated materials.

Chemical conjugation

The protein shells of viral particles contain an array of amino
acid side chains (e.g. lysine, cysteine, tyrosine, histidine) that
provide reactive sites for the chemical conjugation of desired
agents which include fluorescent and medical imaging dyes,
protein or small molecule therapeutics and reactive peptides for
sensor or cell entry (Franzen and Lommel, 2009; Lee et al., 2014; Li
and Wang, 2014). Because of limited space we will not attempt to
categorize the numerous chemical conjugation methods that have
been used to functionalize viral capsids and instead direct the
reader to several excellent reviews that cover this topic as well as
provide strategies for selecting appropriate chemical conjugation
schemes (Dedeo et al., 2011; Stephanopoulos and Francis, 2011;
Strable and Finn, 2009).

Genetic engineering of new residues has also been used to
position the conjugation site at the desired location either on the
internal or external surfaces. For example, this approach has been
utilized to produce 3-D arrays of Au nanoparticles (1.4–5 nm) on
the surface of CPMV (Blum et al., 2004; Wang et al., 2002). By
adding unique cysteine residues to the surface of CPMV Blum et al.
was able to attach Au nanoparticles at defined spatial locations
(Blum et al., 2005). CPMV scaffolded Au particles were then
interconnected via thiol conjugations to produce conductive
nanowires and blocks. The ability to use the uniform and repeating
patterns of PVN reactive sites to design and control the contacts
between 3-D arrayed PVNs is a novel approach to fabricate
electrical circuitry at the nanoscale.

Electroless deposition

Electroless deposition (ELD) is a key method that has been
extensively studied for the mineralization of biological templates
with inorganic materials (Bittner, 2009). ELD reactions are ideally
suited for biological templates as they are solution based, active at
room temperature and pH neutral. In addition, ELD systems
provide nanometer scale tunability for the density and thickness
of the deposited coatings. This tunability is dependent upon the
controlled and uniform reduction of metallic and oxide metals
onto solution exposed PVN surfaces. The repeating patterns of
charged amino acids along PVN surfaces provide molecular level
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spacing from which to attract precursor ions such as Pd and Pt
(Manocchi et al., 2011; Shenton et al., 1999). Typically the solution
pH is adjusted so that the charges of the PVN surface and coating
ions are mutually attractive (Knez et al., 2004; Lee et al., 2006).
Subsequent reduction of scaffold associated ions produces the
autocatalytic deposition of additional metals, forming nanoparti-
cles that rapidly grow and coalesce to cover the entire PVN surface
within seconds (Manocchi et al., 2011). Alterations to the viral
template that enhance the attraction between the virus scaffold
and precursor ion, such as the genetic engineering of surface
exposed cysteine derived thiol groups, can significantly enhance
the uniformity and tunability of this coating process (Blum et al.,
2005; Lee et al., 2006; Royston et al., 2008). Additional ELD
modifications including the addition of PEG-thiol groups or
repeated deposition cycles have also been demonstrated to
enhance metal deposition onto viral templates (Lim et al., 2010;
Zhou et al., 2012).

Polymer and silica coatings for added stability and function

PVNs have been functionalized with silica and polymeric coat-
ings such as aniline which are both stable in a wide variety of
chemical and physical conditions. These polymer coatings are
known to enhance the stability of virus scaffolds under more
stringent coating processes as well as yield novel materials with
unique conductive and mesoscale structures (Fowler et al., 2001;
Niu et al., 2007a, 2007b; Rong et al., 2009). The uniform size,
shape and molecular properties (e.g. charge, hydrophobicity) of
PVNs generally function to drive particle-to-particle associations
into higher order arrays and films in a concentration dependent
manner (Rong et al., 2011). These self-association properties have
been applied to the production of 2-D films and monolayers with
potential applications in nanoelectronics and sensing. One exam-
ple of functionalizing PVNs to form discrete macromolecular
complexes involves the end-to-end alignment of rod-shaped
TMV. The polar nature of the TMV rod results in a natural
propensity to align end-to-end (Butler, 1999). However, this end-
to-end association is concentration dependent and unstable. Niu
et al. addressed this instability by polymerizing a nanometer thin
layer of polyaniline onto the TMV PVNs (Niu et al., 2006, 2007b).
This polymer coating neutralizes repulsive carboxylate interac-
tions at the rod ends resulting in stable single virion width fibers
greater than 1 mm in length (Lu et al., 1996; Niu et al., 2006).

Aniline coated PVNs can be further modified by silica conden-
sation reactions to produce thick (50–100 nm) silica shells that are
amenable to a number of modifications under conditions that
would normally denature the virus by itself (Royston et al., 2009).
These silica encased virus templates provided a highly stable and
robust platform for the deposition of metals at high densities and
applications that require organic solvents and high temperatures
including catalysis and molecular separations.

Genetic engineering of extended CP sequences

Genetic modifications to CP open reading frames (ORFs) have
also provided a successful strategy to produce novel PVNs with
unique functionalities. In general the addition of short peptide
sequences, �15 to 25 amino acids, are tolerated for virion
assembly (Pogue et al., 2002). However, assembly appears to be
highly dependent on the nature of the peptide sequence such that
even short extensions can inhibit virion formation (Frolova et al.,
2010). Larger peptide additions to the virion surface including
fluorescent proteins GFP and mCherry have been reported for PVX
(Cruz et al., 1996; Tilsner et al., 2013). The assembly of these larger
CP fusions depends on the co-expression of the wild-type CP
either independently or through the use of a “leaky” stop codon,

producing a particle with a mix of CPs of which only a fraction
displays the fusion peptide (Cruz et al., 1996). In contrast, Werner
et al. demonstrated that fusion of a 133 amino acid segment of
protein A to the TMV CP ORF produced virions that displayed this
peptide from every subunit, conferring antibody binding to the
entire virus particle (Werner et al., 2006). This finding further
demonstrates the importance of the extension sequence in achiev-
ing assembly of the modified CP. From these studies it seems clear
that virus CPs are remarkably pliable for their ability to assemble
and thus amenable to a range of modifications.

Templating novel materials and functions

PVN nanowires

The 4 nm central channel of the rod-shaped TMV particle has
been used as open-ended container from which to confine the
deposition of a range of metals and metal alloys including Ag, Ni,
Co, Cu, Pt, Co�Pt, and Fe�Pt (Balci et al., 2006; Dujardin et al.,
2003; Knez et al., 2003; Kobayashi et al., 2010). Selective deposition
within the TMV PVN inner channel is achieved by tuning the
activation of Pd and Pt precursor ions with phosphate buffer such
that in the absence of phosphate ions ELD occurs primarily within
the inner channel while in the presence of phosphate buffers
deposition occurs on the outer surface (Knez et al., 2004).
Constrained within the inner channel these deposition reactions
produced 3 nm wide wires of varying lengths. Genetic modifica-
tions to the inner channel of Tomato mosaic virus (ToMV), a close
relative to TMV, have been applied to enhance and alter the
synthesis of metal wires within the PVN inner channel (Kobayashi
et al., 2010). Amino acid substitutions along the inner face of the
ToMV inner channel were created to increase the number of
positively charged nucleation sites for the attraction of precursor
cations resulting in enhanced inner channel coatings with the alloy
Co�Pt. These hybrid metal-PVN particles have potential applica-
tions in catalysis and sensing. It is interesting to speculate that PVN
CP insulated conductive wires could be further decorated with
binding peptides to produce sensor architectures that position the
analyte binding site within a few angstroms of the electrode sensing
surface. Such sensor architecture could significantly enhance sig-
naling at the biology-device interface.

Scaffolds and cages

The interior surfaces of virus particles represent constrained
cargo containers. Evolution has designed these containers to
preferentially accept viral nucleic acid through a process orche-
strated by sets of electrostatic interactions between basic amino
acids, arginine and lysine within the viral CP nucleic acid binding
domain and the negatively charged viral genome. The positive
charges within the binding domain represent a useful surface from
which to attach and synthesize cationic compounds. Douglas et al.
(2002, 1998) demonstrated that the positively charged interior
surface of empty (eCCMV) particles provides a constrained reac-
tion vessel for the synthesis of anionic materials including Fe2O3,
vanadates, tungstates and molybdates (Fig. 1A and B). Similarly,
genetic mutations that replaced nine basic residues at the internal
N-terminal domain of the CCMV CP with negatively charged
glutamic acid produced a conducive nanometer-scale cage for
the synthesis of cationic transition metals Fe2O3, Fe3O4, Co2O3

(Douglas et al., 2002). Synthesis within the eCCMV particles was
controlled by reversible pH-regulated gating that induces the
opening of virion pores upon treatment at pH46.5 (Speir et al.,
1995a). Similar capsid gating is observed in RCNMV where it has
been used to load and release small molecules including
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fluorescent dyes and cancer therapeutics (Honarbakhsh et al.,
2013; Loo et al., 2008).

Inside/outside PVN modifications for therapeutic applications

The ability to deposit and cage molecules within a nano-
particle is a highly sought trait for applications in therapeutic
and imaging dye delivery (Franzen and Lommel, 2009; Wen et al.,
2013). Much of this interest is derived from the ability to precisely
functionalize defined PVN surfaces with tracking dyes, therapeutic
payloads and cell specific ligands. We will not attempt to fully
address this rapidly expanding area of study but instead highlight
a few recent studies demonstrating the potential of these systems.

RCNMV PVNs have been studied for the uptake and release of
the cancer drug Doxorubicin (Dox) (Cao et al., 2014). The loading of
Dox onto and within the RCNMV PVN comprises two distinct

processes. The first involves electrostatic interactions between the
drug and surface residues of the RCNMV particle. These surface-
based electrostatic interactions can be modulated through envir-
onmental factors (buffer composition, pH, ionic strength) to
control drug loading and release. The second involves loading of
the drug within the PVN via its pore openings and appears to
involve the intercalation of the flat ringed Dox molecules with the
encapsidated viral RNA. Dox release from within the PVN was
found to be slower presumably due to stronger binding affinities
with the viral RNA.

In another study the ability to precisely modify TMV PVNs
genetically and chemically at defined positions allows for the
design of nanoparticles that carry multiple functions for both
imaging and cell targeting. Bruckman et al. has utilized this multi-
modality approach to attach fluorescent dyes for optical imaging,
Gd ions for magnetic resonance imaging and a receptor peptide to

Fig. 1. PVN mineralization and surface assembly. (A) Tungstate ions enter open eCCMV at pH46.5. Particle closure and mineralization occur upon lowering pH. (B)
unstained and stained TEM images of paratungstate mineralized eCCMV. Reprinted with permission from T, Douglas, and M. Young, Nature 393, 152 (1998). Copyright 1998,
Nature Publishing B, TMV1cys assembly and mineralization via electroless plating. C and D, TEM and SEM images of nickel coated TMV 1cys assembled surfaces. Adapted
with permission from E. Royston, A. Ghosh, P. Kofinas, M.T. Harris, and J.N. Culver, Langmuir 24(3), 906 (2008). Copyright 2008. American Chemical Society.
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target cell adhesion through the VCAM-1 receptor (Bruckman
et al., 2014). These multi-functional high aspect ratio rod-shaped
TMV PVNs were found to enhance the detection of atherosclerotic
plaques within blood vessels of a mouse model. It is clear from
these studies that PVNs hold promise as cargo carriers for a range
of medically relevant materials.

PVN assembly and patterning for enhanced applications

One of the most significant challenges in developing biological
templates for applications in nanoscience is the ability to precisely
pattern and integrate these templates into devices so as to
leverage their nanometer size and enhance function. Several
approaches that have permitted the integration and fabrication
of functionalized plant PVNs onto surfaces for enhanced applica-
tions are described below.

Two-dimensional surface assemblies

Surface alignments of both icosahedral and filamentous plant-
based PVNs have been accomplished using evaporative methods
such as drop-and-dry or solution dipping. Formation of PVN films
by these methods is predominantly controlled by the concentra-
tion of PVN and the strength of its surface attraction (Barick and
Bahadur, 2010; Evans, 2008). The uniform and multivalent nature
of these PVN coated surfaces has led to investigation into their
effects on cell responses and differentiation (Kaur et al., 2010a,
2010b; Zan et al., 2012; Zeng et al., 2011). Using Turnip yellow
mosaic virus (TYMV) as a scaffold for the multivalent display of the
cell adhesion peptide RGD, Zan et al. demonstrated enhanced
mesenchymal stem cell adhesion and spreading onto surfaces
layered with TYMV genetically programed to display the RGD
peptide (Zan et al., 2012). Similarly, surfaces coated with TMV
particles have been shown to facilitate the differentiation of
mesenchymal stem cells into bone producing osteogenic cells. In
the presence of TMV coated surfaces, stem cells showed a marked
induction of bone morphogenetic protein-2 and coalesce to form
bone-like nodules within 24 h (Sitasuwan et al., 2012). In a
subsequent study differentiation into osteogenic cells was also
enhanced by surface featured TMV PVNs chemically cross-linked
with the RGD adhesion peptide (Sitasuwan et al., 2014). Combined
these studies demonstrate that plant-based PVNs provide

multivalent display scaffolds for the display of nanotopographical
features capable of promoting cell adhesion and differentiation.

Another application for the use of surface displayed metal nano-
particles is in catalysts where there exists a range of industrial
reactions in which the unique material properties and increased
surface area of nano-feature catalysts can confer enhanced activities
over similar bulk displayed materials (Zhang et al., 2014). In addition,
the ability to modulate catalyst position, size and spatial density
represents a significant means to control catalytic reactions. PVNs have
provided a unique backbone from which to produce, anchor and
display key nano-catalysts. As an example, Yang et al. utilized the TMV
PVN to controllably produce and display Pd nanoparticles of defined
size, 5–15 nm in diameter, and distribution (Yang et al., 2014).
Reactions directed at the catalysis of hexavalent chromium, a toxic
environmental pollutant, using these TMV templated Pd nano-
catalysts produced significantly higher catalytic activity per unit Pd
mass than commercial Pd�carbon systems.

3-D assemblies

Icosahedral viruses represent highly uniform 3-D building blocks
that are amenable for the assembly of multi-dimensional nano and
meso scale structures. For example, CPMV and CCMV have both been
investigated for their ability to form layered 3-D surface structures
using biotin - streptavidin crosslinking (Steinmetz et al., 2006; Suci
et al., 2006). This approach allows the layer-by-layer assembly of
functionally unique PVNs to produce micron level ordered particle
assemblies. Kostiainen et al. used tunable electrostatic attractions
between negatively charged CCMV particles and positively charged
gold nanoparticles to produce 3-D superlattices (Kostiainen et al.,
2013). Such layer-by-layer assembly processes combined with the
ability to modify both outer and inner PVN surfaces represent a
powerful method for the precision assembly of multifunctional
nanoscale materials.

Filamentous plant viruses represent high aspect structures with the
potential to significantly increase surface area if they could be
patterned in a vertical manner. To address this potential the rigid
rod of TMV was genetically engineered to promote vertical alignment
and surface attachment (Royston et al., 2008) (Fig. 1C�E). Using the
known 3-D structure of TMV a novel mutant, TMV1cys, was created by
inserting a cysteine codon within the N-terminus of the CP ORF
(Namba et al., 1989). Through thiol-metal or thiol-charge interactions
the positioning of the 1cys mutation contributes to the attachment

Fig. 2. PVN based hierarchical surface fabrication. (A) Fabrication schematic. (B) SEM image of surface pillars assembled with TMV-PVNs. TEM inset image of a single
TMV1cys pillar. Reprinted with permission from K. Gerasopoulos, E. Pomerantseva, M. McCarthy, A. Brown, C. Wang, J.N. Culver, and R. Ghodssi, ACS Nano 6(7), 6422 (2012).
Copyright 2012, American Chemical Society.
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and vertical positioning of the viral rods onto a variety of surfaces
including gold, stainless steel, SU-8 polymer and Teflon™
(Gerasopoulos et al., 2010; Ghosh et al., 2012; Royston et al., 2008).
Although surface exposed, the N-terminal 1cys mutation is recessed
within a groove and partially covered by the C-terminal arm of the CP.
This position likely inhibits direct contact between the cysteine
derived thiol and the metal surface except at the 30 end of the virion
rod where the thiol group is sufficiently exposed to make direct
surface contact. Subsequent ELD mineralization of surface assembled
TMV1cys produce evenly coated virus templates containing confluent
metal coatings as thin as 15 nm in thickness. In addition, the virus rods
are perpendicularly assembled onto surfaces, significantly increasing
available area by an order of magnitude (Royston et al., 2008). Surface
assembly of viral particles prior to inorganic coatings also represents a
means to overcome issues associated with the aberrant metallization
of non-templated particles (Knez et al., 2004; Lee et al., 2005; Shenton
et al., 1999). Viral template attachment to a surface allows for these
non-templated clusters to be washed away. This process provides a
simple and robust means to produce nanofeatured surfaces with
increased area that can be directly integrated onto device interfaces.

Top-down methods for PVN fabrication

The ability to integrate biology into functioning devices has
revolutionized genomic and proteomic analysis and their use in
sophisticated surveillance systems for the detection of disease and
defense threats (Liu et al., 2010). The inherent stability of PVNs
makes them compatible with several traditional top�down
microfabrication methods. For example, Gerasopoulos et al. uti-
lized a lithography-based lift-off method to pattern TMV1cys
assembled on gold-coated silicon wafers (Gerasopoulos et al.,
2010). This method utilizes photoresist masks to define sacrificial
layers that are removed by either acetone for metal-coated PVN
surfaces or a pH adjusted developer for naked uncoated PVNs to
reveal the desired surface patterns.

Plant-based PVNs have also been patterned into nanostructures
using electron beam lithography (eBL) (Alonso et al., 2013b). In
this study TMV PVNs were spin coated with either negative or
positive resist and eBL writing used to expose defined PVN
sections while leaving other particle sections covered. The mod-
ified system developed for this process utilizes biocompatible
temperatures and organic solvents resulting in a structurally intact
TMV particle that was readily decorated with CP specific
antibodies.

It is also possible to enhance the stability of TMV in organic
solvents and at temperatures up to 160 1C. Holder et al. accom-
plished this increase in stability though the conjugation of poly-
ethylene glycol chains onto surface exposed CP tyrosine residues
(Holder et al., 2010). The protective PEG coat allows the TMV PVN
to be integrated with hydrophobic materials and organic solvents
while maintaining the ability to further modify additional CP
residues. As a result PEG modified viruses can be thermally cast
within solid polystyrene, opening up the potential to incorporate
functionalized virus scaffolds into conductive polymers for
enhance photoelectronic and sensing applications.

PVNs have also been shown to be suitable for patterning by
contact printing methods. Specifically, a polydimethylsiloxane
stamp was used to create oriented lines of TMV PVNs onto
oxidized silicon surfaces with feature spacings as small as
130 nm (Balci et al., 2008). The ability to treat PVNs as ink opens
an array of technologies for the large scale patterning of functio-
nalized PVNs onto device surfaces. Combined, these top-down
approaches provide conceptual advances toward the top-down
fabrication of complex biological material into device applications.
The ability to pattern naked PVN templates via these

microfabrication methods without disrupting their structure or
activity demonstrate the potential of these nanotemplates to be
integrated into traditional manufacturing streams.

Applications of surface assembled PVNs

PVN-based electrode enhancements

The nanostructured features produced by the surface assembly
of TMV1cys confer a number of advantages to electrodes over
planar surfaces. Most significantly the high aspect ratio structure
of the TMV rod results in a significant increase in surface area,
permitting greater contact between electrode and electrolyte.
Virus nanostructured surfaces also confer unique electrode archi-
tecture where metal-coated TMV1cys viruses function as an array
of current collectors, each one surrounded by energy active
material (Fig. 2). To produce these electrodes TMV1cys is first
assembled onto a current collector such as stainless steel and then
coated by ELD with conductive nickel or cobalt. Several fabrication
methods including atomic layer deposition, sputtering, electro-
deposition or polymer electrolyte deposition are then used to
deposit specific battery active materials over the virus-featured
surfaces (Chen et al., 2011a, 2010, 2011b, 2012; Gerasopoulos et al.,
2010, 2012; Ghosh et al., 2012; Pomerantseva et al., 2012) (Fig. 2).
This architecture greatly reduces the diffusion lengths for both
electrons and ions during battery cycling, producing greater
energy storage at a given discharge rate and faster overall charge
discharge capabilities.

TMV1cys has been investigated as an electrode material in a
number of battery chemistries including nickel-zinc and lithium-ion
(Chen et al., 2011a, 2010, 2011b, 2012; Gerasopoulos et al., 2008;
Royston et al., 2008). Here we will only highlight one TMV-based
electrode application involving the integration of TMV1cys-featured
surfaces for the construction of silicon-based anodes (Chen et al.,
2011a, 2010). Silicon has the highest potential energy density for any
anode material (Boukamp et al., 1981). However, upon lithium cycling
silicon undergoes considerable swelling, leading to pulverization of the
silicon coating and subsequent poor cycling behavior. Efforts to
identify electrode architectures that tolerate this swelling have identi-
fied columnar nanowire structures as structurally accommodating
(Chan et al., 2008). The rod-shaped TMV1cys represents a novel
columnar nanowire structure that when coatedwith conductive nickel
provides a forest of nanoscale electrodes that can be coated with
silicon by vapor deposition or electrodeposition (Chen et al., 2011a,
2010). These virus-based silicon composite electrodes exhibited sig-
nificant improvements in cycling stability as well as electrochemical
activity due to the unique core-shell proximity between the conduc-
tive nickel within each silicon nano-column. Furthermore, PVN-
featured silicon anodes produced energy densities that were nearly
three times that of commercially used graphite (Chen et al., 2011a).

In addition to providing a nanostructured scaffold for the
fabrication of nanocomposite electrode materials surface attached
TMV1cys also stabilizes the association of the electrode material
on the fabrication surfaces. Ghosh et al. assembled TMV1cys on to
a non-stick Teflon™ surface (Ghosh et al., 2012). Subsequent
coatings with cobalt oxide and a flexible polymer electrolyte were
possible only on TMV1cys and not with the unmodified wild-type
TMV. This indicates that surface assembly is dependent upon
interactions between the electronegative Teflon™ surface and
the TMV1cys engineered cysteine-based thiol groups. Intercalation
into the 3-D TMV1cys surface and polymerization of a polymer
electrolyte produced a peelable electrode. Thus, in addition to
enhanced surface area PVN nanofeatures also enhance the stability
of ELD surface coatings.
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Superhydrophobic surfaces, heat exchangers and
photoelectrochemical cells

There have been a number of applications that combine the
bottom-up assembly of virus nanofeatures with top�down nano-
fabrication methods. One such application is the fabrication of
hierarchical structures that combine both nanoscale and micro-
scale structures to produce superhydrophobic surfaces. McCarthy
et al. used a biomimetic approach to reproduce the hierarchical
features responsible for the hydrophobicity of aquatic plant leaves
(McCarthy et al., 2012). Using traditional lithography methods
microscale SU-8 polymer columns were created and assembled

with TMV1cys PVNs as a mimic of the microscale bumps and
nanoscale hairs found on lotus leaves. Results demonstrated that
surfaces with PVN based nano-features produced an antiwetting
capillary environment. When combined with the ability of the
micro-scale columns to disrupt water droplet shockwaves, a
unique non-wetting substrate was produced that closely mimics
that of plants and represents a paradigm shift in the design of
water repellent surfaces.

Heat exchange surfaces represent another application where
TMV1cys-featured surfaces confer substantial increase in effi-
ciency. Nickel plated TMV1cys gold, copper, aluminum and stain-
less steel surfaces show increased heat transfer coefficients up to
200% while showing no physical degradation of the PVN coated
surface after a 24 h boiling exposure (Rahman et al., 2014). Heat
transfer represents an important aspect in many industrial appli-
cations such as water purification and energy generation. Plant-
produced PVNs thus represent a potentially cost effective means of
enhancing this process on a large scale.

An additional application demonstrated for 3-D assembled
TMV1cys has been in the production of nanofeatured surfaces
for the enhancement of photoelectrochemical solar cells for the
splitting of water to produce hydrogen gas (Chiang et al., 2012). In
this study TMV1cys was assembled onto a gold-coated ITO/glass
substrate, plated with nickel using ELD and sputter-coated with
photoreactive CuO to a thicknesses of 500 nm. This PVN nanoscale
configuration was designed to reduce the charge carrier transport
distance. Because the resulting nanostructures are smaller than
the wavelength of visible light, light reflection is decreased and
more solar energy is absorbed. Results from this configuration
produced the highest yet recorded photocurrent density; 3.15 mA/
cm2 for similar sized CuO systems.

Nucleic acid modifications for PVN patterning and assembly

The development of “DNA origami” methods that utilize
nucleic acid hybridization to produce novel macromolecules of
defined shape and size have transformed our expectations regard-
ing the structural control that is achievable with biological
components (Rothemund, 2006). To date several approaches have
been investigated as a means to incorporate the specificity of
nucleic acid hybridization into the patterning or modification of
plant-based PVNs. One study has taken advantage of the natural
disassembly steps of TMV to add specific DNA linkages that can be
used to address the virus particles to defined locations that
contain the complementary DNA sequences (Yi et al., 2005,
2007) (Fig. 3A�D). TMV disassembles via a co-translational
process in which the increased pH and reduced Caþ þ concentra-
tions that occur upon cell entry destabilize juxtaposed intersubu-
nit carboxylate groups (Namba et al., 1989; Wilson, 1984). This
weakens the virus particle and leads to the preferential removal of
CP subunits from the viral RNA 50 end where the protein-nucleic
acid interactions are weakest due to the lack of guanosine residues
within the first 69 nucleotides of the TMV genome (Steckert and
Schuster, 1982). During infection this produces a rod-shaped
particle with an exposed ribosome-binding site, allowing the virus
RNA to remain encapsidated until under active translation. This
process can be mimicked in vitro to produce PVNs with exposed 50

RNA sequences. Yi et al. took advantage of this natural process to
hybridize unique DNA linker sequences to the viral 50 RNA
sequences (Yi et al., 2005, 2007). These linker sequences also
encoded novel address sequences that enabled hybridization
patterning of the PVNs to surface printed complementary
sequences. This system has subsequently been used to pattern
TMV displayed antibodies onto discrete hydrogel microparticles,
producing a 53-fold enhancement in target protein capture from

Fig. 3. Nucleic acid directed patterning and assembly of TMV PVNs. (A) Scheme for
the patterned hybridization of partially disassembled fluorescently labeled TMV
PVNs. (B) (C) and (D) Fluorescent micrograph and SEM images of patterned TMV
PVNs. Adapted with permission from H. Yi, G.W. Rubloff, and J.N. Culver E,
Langmuir, 23(5), 2663 (2007). Copyright 2007, American Chemical Society. E,
Diagram for the assembly of surface attached TMV RNA with CP, dimensions not
to scale. Reprinted with permission from A. Mueller, F.J. Eber, C. Azucena, A.
Petershans, A.M. Bittner, H. Gliemann, H. Jeske, and C. Wege, ACS Nano 5(6), 4512
(2011). Copyright 2011, American Chemical Society.
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the displayed antibodies (Jung and Yi, 2014). This level of protein
capture represents a significant enhancement over traditional
systems and has the potential to incorporate nucleic acid directed
PVN based antibody patterning to isolate and sort target proteins
from complex solutions.

Viral nucleic acids encode origin of assembly (OAS) sequences
that function in association with the CP to initiate virion assembly
(Basnayake et al., 2009; Butler, 1999). In addition, OAS sequences
are modular and when engineered into a heterologous nucleic acid
sequence can direct the encapsidation of that sequence (Hwang
et al., 1994). Interestingly, Loo et al. attached an oligonucleotide
mimic of the RCNMV OAS to Au, CdSe and CoFe2O4 nanoparticles,
3–15 nm in diameter (Loo et al., 2007). The addition of RCNMV CP
and RNA 1 resulted in the assembly of virus-like capsids around
the targeted nanoparticle, demonstrating that OAS sequences can
function to direct the encapsulation of inorganic materials.

Viral OAS sequences have also been used in the assembly and
patterning of TMV PVNs using RNAs covalently ligated to DNA linkers
conjugated onto pre-patterned aldehyde-functionalized SiO2 wafers
(Mueller et al., 2011) (Fig. 3E). Patterned RNAs containing the OAS
were capable of guiding the bottom-up assembly of TMV-like rods,
100–500 nm in length, upon the addition of purified CP. The ability to
assemble a TMV-like rod on an isolated surface attached RNA holds
the potential to produce chimeric capsids that display unique
functional groups or peptides at precise locations along the length
of the PVN. Recently, the production of RNAs that contain multiple
TMV OAS in defined positions have been used to produce branched
rod-shaped particles (Eber et al., 2015). This approach represents a
potential strategy to incorporate nucleic acid origami design princi-
ples into the direct assembly of PVNs. In addition, the ability to
surface immobilize virion assembly intermediates on defined RNA
templates represents a potentially powerful means to capture and
directly identify CP intermediates that are involved in virion initia-
tion and elongation. Such a system could address the longstanding
controversy as to the structural configuration of the CP aggregates
involved in the assembly process (Butler, 1999; Correia et al., 1985).

Empty plant virus nanoparticles (ePVNs): strategies and
applications

PVNs have proven to be both genetically and chemically
malleable to the addition of novel moieties that add new func-
tionalities to the virus nano-structure (Flynn et al., 2003; Liu et al.,
2012; Pokorski and Steinmetz, 2011; Saunders and Lomonossoff,
2013). Yet despite these characteristics the application of intact
virus particles is often limited by problems associated with viral
replication and recombination that lead to the deletion of the
desired function. In addition, genome size constraints dictated by
the need for a replication-competent virus genome also limits the
types of genetic modifications that can be made to these particles.
To circumvent these limitations researchers have for a number of
years developed heterologous expression systems for the pro-
duction of virus-like particles or ePVNs that assemble in the
absence of the viral genome (Dedeo et al., 2011; Saunders and
Lomonossoff, 2013; Yildiz et al., 2011). ePVNs eliminate the need
for infection competent virus while expanding the genetic pro-
grammability of the PVNs and decreasing time of production.
Described below are selected examples of ePVN systems and
applications.

Strategies for ePVN production and controlled assembly

There are well-established examples of icosahedral virus CPs
self-assembling into empty particles when expressed from a
heterologous system such as Escherichia coli and Pichia pastoris

(Brumfield et al., 2004; Dedeo et al., 2011; Sainsbury et al., 2010).
While we will not describe these established heterologous expres-
sion systems in detail we do want to highlight the development of
a CPMV system for the generation of empty VLPs directly in plants
(Saunders et al., 2009). To achieve ePVN assembly in plants
Saunders et al. generated a set of high expression vectors that
take advantage of a modified leader sequence from CPMV to
induce hypertranslation of cognate mRNAs (Sainsbury and
Lomonossoff, 2008). Using this system a precursor VP60 ORF
was co-expressed with the viral 24 kDa proteinase to yield mature
L and S CPs that are assembly competent. This plant-based system
for the production of ePVNs provides potential advantages in the
scale of production as well as cost savings.

The ability to express and assemble PVNs independent of virus
infection also holds the potential to produce novel particle
architectures that would not normally be created. For example,
the assembly profile of CCMV-derived ePVNs can be modulated
between icosahedral and rod-like by encapsulation of a polyanio-
nic semiconducting polymer (Ng et al., 2011). The polyanionic
polymer functions as a stand-in for the negatively charged viral
RNA, promoting PVN assembly from purified CCMV CPs. Solution
ionic strength is used to modulate the structure of the polymer
from a coiled form, which results in icosahedral PVNs similar to
the virus, to an extended conformation, which produces rod-like
CCMV structures. This process appears to mimic that of a number
of multipartite plant viruses, such as Alfalfa mosaic virus, that
produce a defined range of virion structures from icosahedral to
rod-like depending on the length of the encapsidated nucleic acids
(Kumar et al., 1997).

Strategies for the production of empty rod-shaped TMV ePVNs
have also been developed (Brown et al., 2013). Generally, monomer
and trimers of the TMV CP assemble into a two-layer disk
composed of 34 subunits that further assemble into virus-like rods
in the presence of viral RNA (Durham et al., 1971; Klug, 1999).
Factors including CP concentration, pH and ionic conditions can be
used to control the equilibrium between these structural inter-
mediates, even in the absence of viral RNA. The ability to control
and modify the formation of assembly intermediates represents a
powerful means to produce novel ePVN structures that would not
form under native conditions. Previous studies have expressed TMV
CP and shown that under physiological conditions (neutral pH)
these purified CPs form only lower order assemblies that include
small aggregates and disks (Bruckman et al., 2011; Dedeo et al.,
2010, 2011; Miller et al., 2007). Recently, a bacterial optimized TMV
CP ORF was modified by substituting charge neutralizing amino
acids Q and N at position E50 and D77, respectively (Brown et al.,
2013). Both E50 and D77 form part of an intersubunit carboxylate
pair that functions to control virion assembly (Lu et al., 1996, 1998).
Neutralization of these negatively charged amino acids negates the
repulsive intersubunit interactions and stabilizes the quaternary
structure of the helical rod even in the absence of viral RNA. As a
result of these modifications the TMV CP self-assembled into ePVN
rods. In addition, these ePVNs can be easily purified from lysed E.
coli extracts in large quantities via gradient centrifugation. Subse-
quent studies have shown that the purified ePVNs contain no RNA
and show a level of stability that is similar to the wild-type virus.
These ePVNs can also be modified with the 1cys mutation and self-
assembled onto device surfaces in a vertical fashion, functioning as
biotemplates for the ELD plating of various metals. Furthermore,
this system allows more extensive modification of the viral CP to
display novel functionalities such as the surface display of peptides
that would not otherwise be tolerated during virus infection. A
range of expression constructs permit the display of defined
peptides on all of the assembled subunits via direct fusion to the
CP ORF or on only �25% of the CP subunits through an amber stop
codon (Brown et al., 2013).
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Additional TMV CP modifications have been produced as a
means to promote and control the formation of TMV ePVN rods.
Bruckman et al. genetically inserted a hexa-histidine tag on the C-
terminus of the TMV CP (Bruckman et al., 2011). Bacterial
expressed and purified CPs showed altered assembly profiles,
forming hexagonal disk arrays and rafts of elongated rods whose
assembly could be controlled by the concentration of nickel-
nitrilotriacetic acid. In a subsequent study a novel cysteine residue
introduced at position 103 in the inner loop of the TMV CP was
found to drive virus-like rod assembly by disulfide formation
between apposing CP subunits (Zhou et al., 2013). Redox driven
disulfide bond formation between the 103 subunits was sufficient
to stabilize CP assembly into virion-like rods. These findings
demonstrate novel strategies through which external stimuli such
as nickel ions or redox activity could be used to control TMV ePVN
assembly and disassembly.

Dedeo et al. (2010) took alterations in the TMV PVN surface
features to their extreme, utilizing protein design strategies to
reposition the N and C terminus of the TMV CP from the outer PVN
surface to the inner channel surface. This circular permutant CP
was expressed from E. coli and shown to assemble into disks and
TMV-like rods upon low pH treatments. Furthermore, the reposi-
tioning of the N and C terminus to the inner channel permitted the
application of novel conjugation chemistries to the N terminus for
the selective attachment of target molecules within the inner
channel of the TMV-VLP rod (Schlick et al., 2005). These combined
studies demonstrate the flexibility of virus assemblies to be
designed and manipulated for the production and control of
nanoscale assemblies. It seems likely that these studies represent
only the beginning of ever more complex engineering designs that
utilize PVNs to produce meso and microscale assembles from
these macromolecular building blocks.

ePVN applications

Light harvesting and the study of charge transfer interactions

The symmetry of CP side chains within an assembled ePVN
provides a means to spatially array light harvesting chromophores
on a molecular scale that mimics the photosynthetic antenna
complexes of plants. Several studies have used TMV CPs to
assemble arrays of donor and acceptor chromophores from which
energy transfer and light harvesting activity were readily mea-
sured (Endo et al., 2007; Miller et al., 2007, 2010). In these studies
chromophores were cross-linked to engineered amino acids
designed to position the aromatic chromophores within the inner

channel or along the surface of assembled structures. Mixtures of
CPs containing linked acceptor and donor chromophores were
assembled into either disks or rods depending on pH conditions.
Spectroscopy measurements revealed that under light activation
energy transfer could occur from multiple donor chromophores to
acceptors. Combined these studies demonstrate the flexibility of
PVNs to function as models for understanding fundamental
aspects of light harvesting.

Nanoreactors for enzymatic and therapeutic conversion

Within cells, most enzymes and enzymatic pathways are
generally spatially confined as a means to control and enhance
their activity. A number of studies have shown that enzyme
encapsulation within ePVNs is a viable biomimetic approach to
reproduce this cellular architecture and improve targeted enzy-
matic functions. One of the first to investigate ePVNs as enzymatic
reaction vessels was Comellas-Aragones et al. who assembled the
44 kDa horseradish peroxidase enzyme (HRP) within CCMV CP
(Comellas-Aragones et al., 2007) (Fig. 4A). Using the pH driven
self-assembly of CCMV CP an assembly ratio of CP dimers to HRP
was selected to produce ePVNs containing only one HRP molecule.
Studies confirmed the functional activity of the encapsulated HRP
and the ability to control this activity by regulating substrate
access through the pH controlled gating of the CCMV pores. These
findings outline a strategy to control ePVN based nanoreactors via
access to the encapsulated enzyme. Similarly, Minten et al. has
encapsulated both Pseudozyma antarctica lipase B (PalB) and EGFP
within a single CCMV ePVN (Minten et al., 2011). Results indicated
that the encapsulated PalB produced a higher activity than non-
encapsulated enzyme and that only one PalB molecule per ePVN
was required to achieve maximum activity. The ability to assemble
CCMV ePVNs with defined ratios of PalB and EGFP also demon-
strates the potential to encapsulate more complex enzymatic
pathways to produce efficient nanoscale reactors.

Many cancer therapeutics are delivered as prodrugs that are
typically converted within the liver by cytochrome P450 (CYP) to
their active forms. This conversion is often inefficient and occurs in
healthy tissues away from the tumor, resulting in off target
cytotoxicity (Moen et al., 2012). To address this issue CCMV ePVNs
were used to encapsulate via electrostatic interactions a soluble
version of a bacterial CYP (Sanchez-Sanchez et al., 2014). CCMV
encapsulated CYP readily converted Resveratrol and tamoxifen
prodrug formulations to their active forms and at levels compar-
able or greater than observed in human liver microsomal pre-
parations. Combined with surface displayed cell targeting receptor

Fig. 4. PVN nanoreactors and TNT sensors. (A) Models for enzyme conjugation on external or internal CCMV surfaces, modified from Comellas-Aragones et al., 2007. (B)
Diagram of TMV-VLP displayed TNT binding peptides (VLP-bp-TNT) for electrochemical sensing. C, Results of TNT sensing showing detectable peak changes for VLP-bp-TNT
in the presence of TNT vs buffer and control constructs. Reprinted with permission from F. Zang, K. Gerasopoulos, X.Z. Fan, A.D. Brown, J.N. Culver and R. Ghodssi. Chem.
Commun. 50, 12977 (2014). Copyright 2014, The Royal Society of Chemistry.
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peptides this system provides a potential strategy to deliver
nanoreactor enzymatic activities to specific cells and tissues.

Protein structural engineering methods have been applied as a
means to directly convert PVN surface features into enzymatic
mimics. Using in silico modeling methods Hou et al. identified a
depression on the surface of the TMV CP permutant that
resembled the catalytic site of glutathione peroxidase (GPx), an
enzyme involved in oxidative protection (Dedeo et al., 2010; Hou
et al., 2012). By creating substitutions at residues 142 (serine to
selenocysteine) and 149 (glycine to arginine) within this catalytic
site-like depression the authors were able to engineer a functional
GPx reaction site on the TMV CP surface. Furthermore, in vitro
assembly of the modified GPx CP produced TMV-like disks and
rods displaying multiple enzyme sites with combined activities
that approached that of the native GPx enzyme.

Integrated sensor systems

The ability to display selective peptides from the surfaces of
ePVNs provides a unique opportunity to integrate scaffolded
binding peptides into sensor systems for the detection of a range
of biological and inorganic targets. One recently reported ePVN
sensor system utilizes a TMV PVN system to display trinitrotoluene
(TNT) binding peptides in an electrochemical detection system
(Zang et al., 2014) (Fig. 4B and C). Specifically a TNT binding
peptide was identified via phage display and its sequence geneti-
cally fused to the C-terminal end of the TMV CP (Jaworski et al.,
2008). Solution-based TMV ePVNs displaying this TNT binding
peptide were used as nano-sponges to selectively bind TNT in
solution and reduce its bulk diffusion onto a sensing electrode. The
measured TNT electrochemical reduction peaks were shown to
correspond to the concentration of TNT. This system combines the
fast response and high sensitivity of electrochemical sensing with
selectivity of a scaffolded bioreceptor.

Conclusions and future directions

PVNs provide well-defined, stable and facile structures that can
be readily converted into building blocks for the assembly of new
nanoscale materials and devices. Structural features within the
internal and external PVN surfaces are amenable to either chemi-
cal or genetic modifications for the display of novel moieties with
designed functions. In addition, many of the templating systems
described in this review render or produce virus particles that are
non-infectious. The ability to produce such inert nanoparticles on
a large agricultural/industrial scale makes plant viruses an attrac-
tive system for the production of novel renewable materials.
Combined these factors have made viruses invaluable tools to
investigate “bottom up” assembly approaches that have long been
of interest in the engineering sciences. Yet the efforts outlined
here represent only a fraction of the potential that viruses hold for
nanotechnology. The majority of these studies have used PVNs as
scaffolds to display, deposit or encapsulate novel functions for
enhanced applications such as analyte binding or energy storage.
These are static attributes and do not convey any PVN action
beyond the scaffolding function. Yet, during infection virus parti-
cles function as dynamic structures capable of environmental
sensing and structural alterations such as the pH derived pore
openings in CCMV (Tama and Brooks, 2002). Future advances will
likely develop and expand upon these dynamic biological traits to
assemble multi-functional virus particles that respond to defined
input signals derived from either their environment or a device
interface. For example, virus structures that are able to both sense
the presence of a target and then deliver a cargo will represent
new theranostics tools for both threat surveillance and therapy

delivery. Virus based toolboxes that utilize novel interconnects
between individual particles will be used to build self-assembling
3-D meso and microscale structures much like DNA origami is
currently used to fold DNA into defined nanoscale structures. And
finally, artificial virus particles modeled or templated directly from
their biological counterparts will be assembled from inert poly-
mers and inorganics to function under the extreme conditions
commonly produced in synthetic materials processing, thus allow-
ing these virus-based structures to be fully integrated into tradi-
tional “top down” fabrication schemes. These are just a few of the
possible advances that are likely from the emerging application of
PVNs in nanotechnology.
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